PRO-10MC 4Ω **LOW & MID FREQUENCY TRANSDUCER** ## **TECHNICAL SPECIFICATIONS** | Nominal diameter | 250 | mm | 10 in | |------------------------------------|-------|------|----------------------| | Rated impedance | | | 4 Ω | | Minimum impedance | | | 3,9 Ω | | Power capacity* | | Ę | 500 W _{AES} | | Program power | | | 1.000 W | | Sensitivity | 95 dB | 1W / | 1m @ Z _N | | Frequency range | | 60 - | 5.000 Hz | | Voice coil diameter | 63, | 5 mm | 2,5 in | | BI factor | | | 16,1 N/A | | Moving mass | | | 0,052 kg | | Voice coil length | | | 19,5 mm | | Air gap height | | | 10 mm | | X _{damage} (peak to peak) | | | 40 mm | ### THIELE-SMALL PARAMETERS** | Resonant frequency, f _s | 55 Hz | |--|---------------------| | D.C. Voice coil resistance, R _e | 3,7 Ω | | Mechanical Quality Factor, Q _{ms} | 5,2 | | Electrical Quality Factor, Q _{es} | 0,26 | | Total Quality Factor, Qts | 0,25 | | Equivalent Air Volume to C _{ms} , V _{as} | 27 I | | Mechanical Compliance, C _{ms} | 157 μm / N | | Mechanical Resistance, R _{ms} | 3,5 kg / s | | Efficiency, η_0 | 1,7 % | | Effective Surface Area, S _d | $0,035 \text{ m}^2$ | | Maximum Displacement, X _{max} *** | 8 mm | | Displacement Volume, V _d | 280 cm ³ | | Voice Coil Inductance, L _e @ 1 kHz | 0,8 mH | **Note:** On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m #### Overall diameter 261 mm 10,3 in **Bolt circle diameter** 243,5 mm 9,6 in Baffle cutout diameter: - Front mount 9,0 in 228 mm 124 mm **Depth** 4,9 in Net weight 5,7 kg 12,5 lb Shipping weight 6,1 kg 13,5 lb **MOUNTING INFORMATION** #### Notes This datasheet is done with the measurement of a laboratory prototype. Small differences may appear when thw driver is transferred to the production line and manufactured in big quantities ^{*} The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material. ^{**} T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time). ^{***} The X_{max} is calculated as (L_{vc} - H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height.