

PRO-10MC 4Ω

LOW & MID FREQUENCY TRANSDUCER

TECHNICAL SPECIFICATIONS

Nominal diameter	250	mm	10 in
Rated impedance			4 Ω
Minimum impedance			3,9 Ω
Power capacity*		Ę	500 W _{AES}
Program power			1.000 W
Sensitivity	95 dB	1W /	1m @ Z _N
Frequency range		60 -	5.000 Hz
Voice coil diameter	63,	5 mm	2,5 in
BI factor			16,1 N/A
Moving mass			0,052 kg
Voice coil length			19,5 mm
Air gap height			10 mm
X _{damage} (peak to peak)			40 mm

THIELE-SMALL PARAMETERS**

Resonant frequency, f _s	55 Hz
D.C. Voice coil resistance, R _e	3,7 Ω
Mechanical Quality Factor, Q _{ms}	5,2
Electrical Quality Factor, Q _{es}	0,26
Total Quality Factor, Qts	0,25
Equivalent Air Volume to C _{ms} , V _{as}	27 I
Mechanical Compliance, C _{ms}	157 μm / N
Mechanical Resistance, R _{ms}	3,5 kg / s
Efficiency, η_0	1,7 %
Effective Surface Area, S _d	$0,035 \text{ m}^2$
Maximum Displacement, X _{max} ***	8 mm
Displacement Volume, V _d	280 cm ³
Voice Coil Inductance, L _e @ 1 kHz	0,8 mH

Note: On axis frequency response measured with loudspeaker standing on infinite baffle in anechoic chamber, 1W @ 1m

Overall diameter 261 mm 10,3 in **Bolt circle diameter** 243,5 mm 9,6 in Baffle cutout diameter: - Front mount 9,0 in 228 mm 124 mm **Depth** 4,9 in Net weight 5,7 kg 12,5 lb Shipping weight 6,1 kg 13,5 lb

MOUNTING INFORMATION

Notes

This datasheet is done with the measurement of a laboratory prototype. Small differences may appear when thw driver is transferred to the production line and manufactured in big quantities

^{*} The power capaticty is determined according to AES2-1984 (r2003) standard. Program power is defined as the transducer's ability to handle normal music program material.

^{**} T-S parameters are measured after an exercise period using a preconditioning power test. The measurements are carried out with a velocity-current laser transducer and will reflect the long term parameters (once the loudspeaker has been working for a short period of time).

^{***} The X_{max} is calculated as (L_{vc} - H_{ag})/2 + (H_{ag}/3,5), where L_{vc} is the voice coil length and H_{ag} is the air gap height.